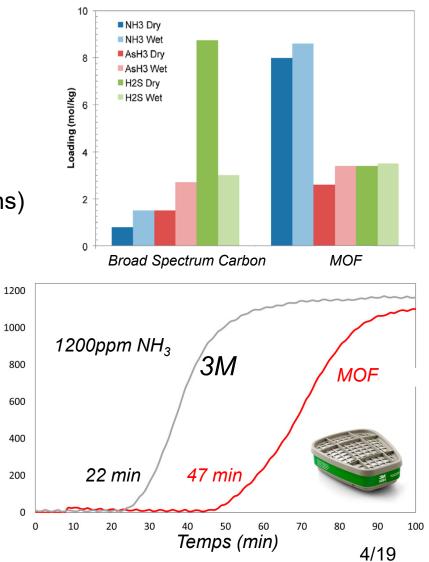


MOF Application Book for Air Quality

Innovative Porous Adsorbents

Molecular sieve with surface area $1,000 - 4,000 \text{ m}^2/\text{g}$

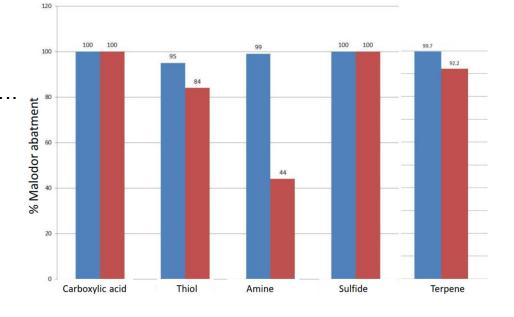
Air purification applications


Safety, Security, Health, Environment, Decarbonation

Air purification against TICs

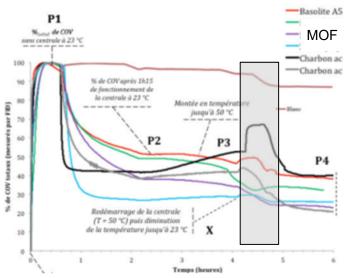
0 0

- Toxic Industrial Compounds
 - $(NH_3, H_2S, HCN, AsH_3,...)$
 - <u>Double</u> adsorption capacity
 - Insensitivity to moisture (unlike Carbons)
 - No release
- Applications
 - Respiratory Filter of class B&K (ABEK)
 - CRBN protection
 - Protection of farmers, bio-methanation


Khabina, Industrial & Engineering Chemistry Res., 2018

Malodor abatment

- Adsorption of Malodors
 - Broad spectrum MOF (all classes of malodors)
 - Insensitivity to moisture
 - No/Low release
- Applications
 - Confined spaces (Subway, AirCraft,.
 - Industrial sites (Oil&Gas)
 - Bio-transformation (agriculture)
 - Laundries, Hairdresser,...
 - Cooking, Kitchens, Restaurants,...
 - Food packaging,


MOF hydrophile
MOF hydrophobe

VOCs abatment

- BTX abatment
 - Benzene, Toluene, Xylenes, Styrene
 - Insensitive to moisture
 - No/Low release when temperature rises
- Applications
 - Confined spaces (Subway, AirCraft,....)
 - Indoor polution (Schools closed to traffic)
 - Cars in passive or active mode (outdoor polution)
 - Solvent vapor abatment
 - VOCs rotating wheels for large industrial sites

Active Carbons release VOCs when T>50°C

Atmospheric CO₂ capture

- CO₂ removal from air
 - Very low humidity uptake for HR <15% (-6°C dew point)
 - Easy regeneration for HR<0,5% (- 40°C dew point)

Applications

- Faster growing in greenhouses
- CO₂ free atmosphere for electronics, Li-batteries, ...
- Lower CO₂ in confined spaces (AirCraft, submarines,)
- Indoor air quality regulation at 2.000ppm for classrooms
- Low energy HVAC in buildings by air recycling
- COVID post-market for schools and offices

Opening windows to mitigate confinement effects in closed spaces (virus concentration and CO_2 level) such as classrooms is not a long term sanitary solution and is energy consuming (heating & cooling)

Combined virus filtration and CO₂ abatment is the only sanitary and energy efficient solution


Production at scale

Production by Spay-Drying

- Like production of Dry Milk Powder
- Demonstration at 10kg/hr
- Advantages:
 - Existing production facilities
 - One-step continuous synthesis
 - Drying included
- Crystalline Powders

Production at scale

More info

- http://www.prodia-mof.eu/
- https://www.mofapps.com/
- https://www.youtube.com/watch?v=YFnO4PI5hY8

Dr. David FARRUSSENG

IRCELYON-CNRS/Lyon University